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Abstract. We investigate the evolution of the interaction of the magnetoplasmon resonance
with the harmonics of the cyclotron resonance as the confinement of an electron gas in a
quantum wire increasingly deviates from the parabolic case. The occurrence of the Bernstein
modes is observed in a time-dependent Hartree model of a two-dimensional electron gas in a
single quantum wire.

1. Introduction

Quantum wires are interesting for probing the electron–electron interaction in the transition
regime from quasi-two-dimensional systems to quasi-one-dimensional systems. These
systems can be fabricated starting from two-dimensional semiconductor microstructures
(2DES), for example in AlGaAs–GaAs heterostructures. The wires may be created by a
gate structure or by etching techniques. The presence of a magnetic field is manifested by
many interesting quantum features, most notably the quantum Hall effect and the fractional
quantum Hall effect. The far-infrared response provides a powerful method for determining
the charge-density spectra in the transverse direction. For transverse parabolic potentials, the
motion of the electrons may be separated into centre-of-mass motion and relative motion.
The centre-of-mass motion is decoupled from the relative motion of the electrons, and
takes place in a transverse potential with the effective frequency(ω2

0 + ω2
c )

1/2, where
h̄ω0 is the confinement energy andωc is the cyclotron frequency. The time-dependent
external potentialφe representing the long-wavelength far-infrared radiation only couples
to the centre-of-mass motion causing a single peak in the FIR spectrum at the plasmon
frequency�p = (ω2

c + ω2
0)

1/2 equal to the effective transverse frequency [1, 2]. Therefore,
according to Kohn’s theorem [1], although a rich spectrum would be expected, there is only a
single resonance. For small systems with general confinement potentials deviating strongly
from the parabolic case, the single-particle excitations may overlap with the collective
excitations causing a fine structure in the plasmon peak [3, 4]. Any deviation from parabolic
confinement will couple the internal and collective motion.

Bernstein showed [5] that in 3D homogeneous systems the dispersion of the
magnetoplasmon as a function of the magnetic field will have anticrossings at finite wave
vectors (k ⊥ B) around �p = nωc where n = 2, 3, . . .. The calculation was based
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on solving the classical Boltzmann equation and Maxwell’s equations self-consistently.
The strength of the anticrossings depends on temperature, wavelength and magnetic field
in a complex way and decreases for the higher harmonics. An interaction between the
magnetoplasmon resonance and the harmonics of the cyclotron resonance, a so-called
Bernstein mode [5], have been observed in 3DES [6], 2DES [7, 8], 1DES (wires) and
0DES (dots) [4]. For confined electron systems in reduced dimensions the breakdown
of Kohn’s theorem in nonparabolic potentials is sufficient for observing Bernstein modes
instead of considering absorption at finite wave vector.

We study the far-infrared absorption in the integer quantum Hall regime. Here
we consider a broad range of deviations from parabolic wires in the time-dependent
Hartree approximation. Increasing deviations give richer excitation spectra when the
magnetoplasmon resonance starts to couple to increasingly higher harmonics of the cyclotron
resonance. We systematically investigate how the splitting and its location depend on the
strength of the deviation from the parabolic confinement.

2. The model

We consider a strictly two-dimensional electron system lying in thex–y plane. The motion in
thez-direction is neglected since the electrons are confined to the lowest subband at the low
temperature attained in experiments. We use the Hartree approximation (HA) to reduce the
many-particle Hamiltonian to a single-particle Hamiltonian for each electron in an effective
potential approximating the electron–electron interaction. For the FIR absorption we use the
corresponding time-dependent approximation describing the self-consistent linear response
of the 2DES to an external homogeneous time-varying electrical field (the random-phase
approximation, RPA). In a constant perpendicular magnetic fieldB the cyclotron frequency
and the magnetic length areωc = eB/(m∗c) and lc = [h̄/(m∗ωc)]1/2, respectively, where
m∗ is the effective mass. The dielectric constant of the surrounding medium is denoted by
κ. It is convenient to introduce the constant perpendicular magnetic field with the vector
potential in the Landau gaugeA(r) = (−By, 0).

The effective Hamilton operator for a single electron in the confining potentialVc(y) is

H = − h̄2

2m∗

(
∇2 − 2i

l2
c

y
∂

∂x

)
+ 1

2
m∗ω2

cy
2 + Vc(y) + VH(r) (1)

where VH(r) is the self-consistent Hartree potential representing the direct Coulomb
interaction between one electron and the total charge density of the 2DES. The periodic
boundary condition in the longitudinal direction of the wire gives a Bloch-type single-particle
wave function:

9nk(x, y) = 1√
Lx

eikxψnk(y) (2)

where the longitudinal wave vectork = p 2π/Lx with p ∈ Z and n is the transverse
quantum number. The length of the wire,Lx , is assumed to be much larger than the
effective width of the wire; therefore the Hartree potential only depends on the transverse
coordinate [9]:

VH(y) = −2e2

κ

∫ ∞

−∞
dy ′ ns(y

′) ln

∣∣∣∣y − y ′

L

∣∣∣∣ (3)

with L given below. It has been assumed that a neutralizing background charge exists. For
noninteracting electrons in a simple one-dimensional parabolic potentialV (y) = 1

2m∗ω2
0y

2,
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the single-particle eigenfunctions are

φnk(y) = 1√
L

1√
2nn!

√
π

Hn

(
y − yk

L

)
exp

[
− (y − yk)

2

2L2

]
(4)

where yk = kl2
c l

4
0/(l

4
0 + l4

c ) is the centre coordinate, which generally does not equal the
expectation value of the transverse coordinatey [10]. Thenth Hermite polynomial is denoted
by Hn. The confinement length is defined asl0 = [h̄/(m∗ω0)]1/2. The electron is localized
within the effective lengthL = [h̄/(m∗�)]1/2, replacing the magnetic lengthlc, and the
cyclotron frequencyωc is replaced by an effective frequency defined by� = (ω2

0 + ω2
c )

1/2.
The eigenenergies corresponding to the eigenstates (4) are

Enk = h̄�(n + 1/2) + (h̄2k2/2m∗)l4
c /(l

4
c + l4

0).

In the case of vanishing confinement (2DES),l0 → ∞, the energy bands reduce to
the familiar dispersionless Landau levels. The effective single-particle Hamiltonian is
diagonalized using the wave functions of the noninteracting electrons (4) as a functional
basis and the self-consistent solutions are obtained by iteration.

The response to a time-dependent perturbation may be found by using the RPA where
exchange and correlation effects are neglected. In this mean-field approximation the
noninteracting Hartree quasi-particles move in a self-consistent potential given by the
external perturbation and the response of the charge density of the electronsns . The self-
consistent potential,φs(r, ω), may be found from the external potentialφe(r, ω):

〈α|φs(ω)|β〉 = 〈α|φe(ω)|β〉 +
∑
δγ

Hα,β;γ,δ(fγ − fδ)

h̄ω + (εγ − εδ) + i0+ 〈δ|φs(ω)|γ 〉 (5)

where α denotes the longitudinal and transverse quantum numbersn and k. fα is the
Fermi occupation factor and the Hartree matrix elements are defined in terms of the Hartree
ground-state wave functions:

Hα,β;γ,δ = e2

κ

∫
dr

∫
dr′ ψ∗

γ (r′)ψδ(r
′)ψ∗

α(r)ψβ(r)

|r − r′| . (6)

A method for findingφs based on a Fourier transformation of the position coordinates and
repeatedly solving (5) for all the values ofω needed is given in [4]. Here we present an
alternative method, transforming (5) such thatφs(ω) can be simultaneously obtained for
all values ofω from a matrix eigenvalue problem. The latter method considerably speeds
up numerical calculations and we have checked that they deliver exactly the same results.
The equation for the self-consistent potential (5) simplifies for transverse external fields.
The longitudinal quantum numberk is conserved in the transition, so each single electron
transition may be labelled byk and two transverse quantum numbersn andm. On applying a
time-dependent but spatially constant electric field,Ee(r, t) = −ŷEe exp(−iωt), the Fourier
component of the external potential isφe(r, ω) = −eEey, where−e is the electron charge.
In the basis (2) the interband matrix elements of the external potential

{φe(ω)}kn,m =
∫

dy ψnk(y)φe(r, ω)ψmk(y)

are real and symmetric. Since the Hartree potential is local, the matrix elements of the
self-consistent potential are also symmetric with respect to the transverse quantum numbers
{φs(ω)}kn,m = {φs(ω)}km,n. This is also the case for local-density approximations, but not for
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the Hartree–Fock approximation, since the Fock potential is nonlocal [11]. The equation
for the self–consistent potential may then be written as an eigenvalue problem:

(h̄2ω2 − (εk
n,m)2) {η(ω)}kn,m =

√
2f k

n,mεk
n,m {φe(ω)}kn,m

−2

εk′
n′ ,m′ >0∑
n′,m′,k′

H
k;k′
n,m;n′,m′

√
f k

n,mεk
n,m

√
f k

n′,m′ε
k′
n′,m′ {η(ω)}k′

n′,m′ (7)

whereεk
n,m = εk

n − εk
m are the quasi-particle excitation energies, andf k

n,m = f k
m − f k

n are
the differences in occupation between initial and final states. For convenience we have
introduced the variable

{η(ω)}kn,m = {φs(ω)}kn,m(2f k
n,mεk

n,m)1/2/(h̄2ω2 − (εk
n,m)2).

The resonances in the FIR spectrum are the eigenvalues of the symmetric matrix:

A
k;k′
n,m;n′,m′ = (εk

n,m)2δ
k;k′
n,m;n′,m′ − 2H

k;k′
n,m;n′,m′(f

k
n,mεk

n,mf k′
n′,m′ε

k′
n′,m′)

1/2. (8)

The power absorption may be found from the Joule heating:

P(ω) = 1

2

∫
dr Re

{
δJ(r, ω) · E∗

s (r, ω)
}

(9)

whereδJ(r, ω) is the induced current in the wire andEs is the self-consistent electric field.
For our system it is

P(ω) = −ω

2

εk
n,m>0∑
n,m,k

{φe(ω)}kn,m Im

[
2f k

n,mεk
n,m

(h̄ω)2 − (εk
n,m)2

{φs(ω)}kn,m

]

= − ω

2

εk
n,m>0∑
n,m,k

√
2f k

n,mεk
n,m{φe(ω)}kn,m Im{η(ω)}kn,m. (10)

The Coulomb interaction may shift the poles of the matrix{η(ω)}kn,m from the Hartree
single-particle excitationsεk

n,m as can be seen from the eigenequation (7). The new poles
will show up as resonances in the FIR absorption (10). Here a phenomenological broadening
should be inserted to give the lifetime of the excitations. In a Fermi liquid the scattering
cross-section decreases for lower-energy one-particle excitations. Hence, one should expect
that at least for low-energy one-particle excitations this broadening is small. The power
absorption may be expanded in the eigenfunctions of the matrixA. The oscillator strengths
can then be found and the whole FIR spectrum determined. Since the Hartree RPA is a
conserving approximation [12], the longitudinalf -sum rule for the oscillator strengths is
satisfied for arbitrary electron–electron interaction strengths.

We study quantum wires with confining potentials of the form

Vc(y) = 1

2
h̄ω0

[(
y

l0

)2

+ a

(
y

l0

)4

+ b

(
y

l0

)6
]

(11)

where a and b are parameters that determine the higher-order deviations from parabolic
confinement. By the method described above, we are able to find the FIR spectra arising
from this confining potential.
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3. Numerical results

The functional basis of the Hartree ground state has been chosen large enough that a further
expansion or iteration of the Hartree equations does not result in visible changes in the
single-particle energy spectra or the electron densityns(r) of the ground state. To attain
sufficient accuracy in the calculation of the absorption the size of the functional basis for
the excited states has been chosen such that further refinement results in changes to the
location of the absorption peaks that are smaller than a typical linewidth in experiments,
0.1 meV.

For the calculations we employ the usual GaAs parameters,m∗ = 0.067m0, and
κ = 12.4, wherem0 is the free-electron mass. The absorption is only weakly dependent on
T in the temperature rangeT 6 4 K for the parameters that we use. The calculations have
thus been performed forT = 1.0 K.

The FIR spectra have been calculated for the range of magnetic fieldsB = 0–3 T. For
a strict parabolic confinement,a = 0 andb = 0, we have checked that the generalized
Kohn theorem is satisfied with a high degree of accuracy. We consider pure fourth-
order deviations,a = 0.01 to a = 0.40, and pure sixth-order deviations,b = 0.001
to b = 0.030. Mixed deviations of fourth and sixth order do not give significant new
qualitative information.

Figure 1. The location of the first anticrossing as a function of the magnetic fieldB and the
fourth-order deviation,a 6= 0, b = 0 (♦), or the sixth-order deviation,a = 0, b 6= 0 (+). The
horizontal line shows where�p = 2ωc. 30 states are occupied,Lx = 240 nm,h̄ω0 = 3.94 meV,
T = 1.0 K, m∗ = 0.067m0, κ = 12.4.

For small deviations, with eithera 6= 0 or b 6= 0, a single anticrossing close to the
2ωc-line appears. The position of the anticrossing as a function of the deviationa or b

is shown in figure 1. The horizontal line shows where�p = 2ωc, i.e. where a possible
resonance between the magnetoplasmon and the cyclotron frequency should appear. The
calculated anticrossing is to the right of the 2ωc-line for small deviations, but is shifted quite
strongly to the left with increasing deviation. This is due to the interaction of the collective
oscillations, the magnetoplasmons, with the first harmonic of the cyclotron resonance, 2ωc,
a so-called Bernstein mode [5].

The absorption peaks as a function of the magnetic field for increasing fourth-order
deviation,a = 0.03, 0.10, 0.20, 0.40, are shown in figure 2 and for increasing sixth-order
deviation, b = 0.003, 0.005, 0.010, 0.030, in figure 3. Only absorption peaks with an
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Figure 2. The location of the absorption peaks as functions of the magnetic fieldB and the
energyE = h̄ω supplied byφe for a pure fourth-order deviation. Only absorption peaks with an
oscillator strength larger than 1% of the total oscillator strength are shown. The straight lines
represent the harmonics of the cyclotron frequency,nωc (n = 2, 3, 4, 5). Strong absorption is
marked by♦, weak by+, very weak by�, and extremely weak by×. 30 states are occupied,
Lx = 240 nm,h̄ω0 = 3.94 meV,T = 1.0 K, m∗ = 0.067m0, κ = 12.4.

oscillator strength that is more than 1% of the total oscillator strength are shown. The
absorption peaks are labelled strong, weak, very weak and extremely weak according to
their relative strength for a given magnetic field. Only excitation energies in the range 3.5–
8.5 meV are shown. The location of the strong resonance at zero magnetic field increases
in energy with increasing deviation, because of the stronger confinement. However, for
intermediate magnetic fields the strong resonance develops a slightly negative slope with
respect to the magnetic field. This softening of the mode increases with increasing deviation.
For large deviations the simple splitting develops into a complex one; see figure 2 for a
fourth-order deviation and figure 3 for a sixth-order deviation. We see that strong deviations
from a parabolic confinement lead to interactions with higher cyclotron harmonics,nωc,
wheren is larger than 2. The new modes may also interact with each other. However, it is
not possible from the spectra to say which harmonics are involved, since several harmonics
can be excited in a complicated way, and the anticrossing occurs at or in between the
nωc-lines. The spectrum is now very rich, because of the strong coupling of the collective
motion to the internal motion in the wire. Splittings may also be seen on the weak-resonance
branches fora = 0.40 in figure 2 and forb = 0.030 in figure 3.

The intensity as a function of the magnetic field and the supplied energy from the
external potential is shown in figure 4 for a pure fourth-order deviation,a = 0.20. Only
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Figure 3. The location of the absorption peaks as functions of the magnetic fieldB and the
energyE = h̄ω supplied byφe for a pure sixth-order deviation. Only absorption peaks with an
oscillator strength larger than 1% of the total oscillator strength are shown. The lines show the
possible interactions of the magnetoplasmon with harmonics of the cyclotron frequency,nωc

(n = 2, 3). Strong absorption is marked by♦, weak by+, and very weak by�. 30 states are
occupied,Lx = 240 nm,h̄ω0 = 3.94 meV,T = 1.0 K, m∗ = 0.067m0, κ = 12.4.

resonances that have a strength of more than 1% are shown. We see that for this deviation
there is mainly one anticrossing; all other resonances are weak. The softening of the modes
occurs as long as two main resonances are seen, i.e. as long as the modes are coupled.

The effect of the deviation is larger for a higher density of the electrons, since the
chemical potential is higher and the 2DEG occupies states farther from the centre of the
wire that are more affected by the fourth- and sixth-order terms of the confinement.

4. Summary

The FIR spectrum for a wire with a confining potential deviating from a parabolic one was
calculated in the time-dependent Hartree approximation. The anticrossing due to interaction
of the magnetoplasmon with the first harmonic of the cyclotron resonance shifts strongly
from the right of the 2ωc-intersection with the plasmon dispersion to the left with increasing
deviation, and the simple splitting develops into a more complex one, including interactions
with higher harmonics of the cyclotron resonance.

In the quantum wire ¯hωc is not a characteristic single-electron excitation energy,
but the width of the system defines a characteristic wave vector which does not vanish
with decreasing deviation from the parabolic confinement. An external perturbation does
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Figure 4. The intensity of the absorption peaks as a function of the magnetic fieldB and the
energyE = h̄ω supplied byφe for a pure fourth-order deviation,a = 0.20. Only absorption
peaks with an oscillator strength larger than 1% of the total oscillator strength are shown. 30
states are occupied,Lx = 240 nm,h̄ω0 = 3.94 meV,T = 1.0 K, m∗ = 0.067m0, κ = 12.4.

excite plasma waves with a broad range of wave vectors, but the system responds in the
strongest fashion for integer multiples of the ‘natural wave vector’. In a homogeneous
two-dimensional electron system the response is always with the same frequency and wave
vector as the external perturbation; thus the asymptotic behaviour of the split-off modes is
simple. Here the asymptotic behaviour is complicated by the fact that the split-off modes
again interact with higher-order plasmons. A detailed study of this phenomenon will be
published elsewhere.
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